Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The glutathione system and the related thiol network in Caenorhabditis elegans.

Identifieur interne : 000112 ( Main/Exploration ); précédent : 000111; suivant : 000113

The glutathione system and the related thiol network in Caenorhabditis elegans.

Auteurs : Gavin Douglas Ferguson [Australie] ; Wallace John Bridge [Australie]

Source :

RBID : pubmed:30901603

Descripteurs français

English descriptors

Abstract

Advances in the field of redox biology have contributed to the understanding of the complexity of the thiol-based system in mediating signal transduction. The redox environment is the overall spatiotemporal balance of oxidation-reduction systems within the integrated compartments of the cell, tissues and whole organisms. The ratio of the reduced to disulfide glutathione redox couple (GSH:GSSG) is a key indicator of the redox environment and its associated cellular health. The reaction mechanisms of glutathione-dependent and related thiol-based enzymes play a fundamental role in the function of GSH as a redox regulator. Glutathione homeostasis is maintained by the balance of GSH synthesis (de novo and salvage pathways) and its utilization through its detoxification, thiol signalling, and antioxidant defence functions via GSH-dependent enzymes and free radical scavenging. As such, GSH acts in concert with the entire redox network to maintain reducing conditions in the cell. Caenorhabditis elegans offers a simple model to facilitate further understanding at the multicellular level of the physiological functions of GSH and the GSH-dependent redox network. This review discusses the C. elegans studies that have investigated glutathione and related systems of the redox network including; orthologs to the protein-encoding genes of GSH synthesis; glutathione peroxidases; glutathione-S-transferases; and the glutaredoxin, thioredoxin and peroxiredoxin systems.

DOI: 10.1016/j.redox.2019.101171
PubMed: 30901603
PubMed Central: PMC6429583


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The glutathione system and the related thiol network in Caenorhabditis elegans.</title>
<author>
<name sortKey="Ferguson, Gavin Douglas" sort="Ferguson, Gavin Douglas" uniqKey="Ferguson G" first="Gavin Douglas" last="Ferguson">Gavin Douglas Ferguson</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052</wicri:regionArea>
<wicri:noRegion>2052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bridge, Wallace John" sort="Bridge, Wallace John" uniqKey="Bridge W" first="Wallace John" last="Bridge">Wallace John Bridge</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia. Electronic address: wj.bridge@unsw.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052</wicri:regionArea>
<wicri:noRegion>2052</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30901603</idno>
<idno type="pmid">30901603</idno>
<idno type="doi">10.1016/j.redox.2019.101171</idno>
<idno type="pmc">PMC6429583</idno>
<idno type="wicri:Area/Main/Corpus">000153</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000153</idno>
<idno type="wicri:Area/Main/Curation">000153</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000153</idno>
<idno type="wicri:Area/Main/Exploration">000153</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The glutathione system and the related thiol network in Caenorhabditis elegans.</title>
<author>
<name sortKey="Ferguson, Gavin Douglas" sort="Ferguson, Gavin Douglas" uniqKey="Ferguson G" first="Gavin Douglas" last="Ferguson">Gavin Douglas Ferguson</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052</wicri:regionArea>
<wicri:noRegion>2052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bridge, Wallace John" sort="Bridge, Wallace John" uniqKey="Bridge W" first="Wallace John" last="Bridge">Wallace John Bridge</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia. Electronic address: wj.bridge@unsw.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052</wicri:regionArea>
<wicri:noRegion>2052</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Redox biology</title>
<idno type="eISSN">2213-2317</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Caenorhabditis elegans (metabolism)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Peroxidase (metabolism)</term>
<term>Metabolic Networks and Pathways (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sulfhydryl Compounds (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Caenorhabditis elegans (métabolisme)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Glutathione peroxidase (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Thiols (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
<term>Voies et réseaux métaboliques (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Glutathione Peroxidase</term>
<term>Sulfhydryl Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Caenorhabditis elegans</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Caenorhabditis elegans</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Glutathione peroxidase</term>
<term>Thiols</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Metabolic Networks and Pathways</term>
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Oxydoréduction</term>
<term>Stress oxydatif</term>
<term>Transduction du signal</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Advances in the field of redox biology have contributed to the understanding of the complexity of the thiol-based system in mediating signal transduction. The redox environment is the overall spatiotemporal balance of oxidation-reduction systems within the integrated compartments of the cell, tissues and whole organisms. The ratio of the reduced to disulfide glutathione redox couple (GSH:GSSG) is a key indicator of the redox environment and its associated cellular health. The reaction mechanisms of glutathione-dependent and related thiol-based enzymes play a fundamental role in the function of GSH as a redox regulator. Glutathione homeostasis is maintained by the balance of GSH synthesis (de novo and salvage pathways) and its utilization through its detoxification, thiol signalling, and antioxidant defence functions via GSH-dependent enzymes and free radical scavenging. As such, GSH acts in concert with the entire redox network to maintain reducing conditions in the cell. Caenorhabditis elegans offers a simple model to facilitate further understanding at the multicellular level of the physiological functions of GSH and the GSH-dependent redox network. This review discusses the C. elegans studies that have investigated glutathione and related systems of the redox network including; orthologs to the protein-encoding genes of GSH synthesis; glutathione peroxidases; glutathione-S-transferases; and the glutaredoxin, thioredoxin and peroxiredoxin systems.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30901603</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2213-2317</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<PubDate>
<Year>2019</Year>
<Month>06</Month>
</PubDate>
</JournalIssue>
<Title>Redox biology</Title>
<ISOAbbreviation>Redox Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>The glutathione system and the related thiol network in Caenorhabditis elegans.</ArticleTitle>
<Pagination>
<MedlinePgn>101171</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S2213-2317(18)31243-6</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.redox.2019.101171</ELocationID>
<Abstract>
<AbstractText>Advances in the field of redox biology have contributed to the understanding of the complexity of the thiol-based system in mediating signal transduction. The redox environment is the overall spatiotemporal balance of oxidation-reduction systems within the integrated compartments of the cell, tissues and whole organisms. The ratio of the reduced to disulfide glutathione redox couple (GSH:GSSG) is a key indicator of the redox environment and its associated cellular health. The reaction mechanisms of glutathione-dependent and related thiol-based enzymes play a fundamental role in the function of GSH as a redox regulator. Glutathione homeostasis is maintained by the balance of GSH synthesis (de novo and salvage pathways) and its utilization through its detoxification, thiol signalling, and antioxidant defence functions via GSH-dependent enzymes and free radical scavenging. As such, GSH acts in concert with the entire redox network to maintain reducing conditions in the cell. Caenorhabditis elegans offers a simple model to facilitate further understanding at the multicellular level of the physiological functions of GSH and the GSH-dependent redox network. This review discusses the C. elegans studies that have investigated glutathione and related systems of the redox network including; orthologs to the protein-encoding genes of GSH synthesis; glutathione peroxidases; glutathione-S-transferases; and the glutaredoxin, thioredoxin and peroxiredoxin systems.</AbstractText>
<CopyrightInformation>Copyright © 2019. Published by Elsevier B.V.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ferguson</LastName>
<ForeName>Gavin Douglas</ForeName>
<Initials>GD</Initials>
<AffiliationInfo>
<Affiliation>School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bridge</LastName>
<ForeName>Wallace John</ForeName>
<Initials>WJ</Initials>
<AffiliationInfo>
<Affiliation>School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia. Electronic address: wj.bridge@unsw.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>03</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Redox Biol</MedlineTA>
<NlmUniqueID>101605639</NlmUniqueID>
<ISSNLinking>2213-2317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.9</RegistryNumber>
<NameOfSubstance UI="D005979">Glutathione Peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017173" MajorTopicYN="N">Caenorhabditis elegans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005979" MajorTopicYN="N">Glutathione Peroxidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="Y">Metabolic Networks and Pathways</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="Y">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Caenorhabditis elegans</Keyword>
<Keyword MajorTopicYN="Y">Glutaredoxin</Keyword>
<Keyword MajorTopicYN="Y">Glutathione</Keyword>
<Keyword MajorTopicYN="Y">Glutathione S-Transferase</Keyword>
<Keyword MajorTopicYN="Y">Glutathione peroxidase</Keyword>
<Keyword MajorTopicYN="Y">Thioredoxin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>12</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>03</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>03</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30901603</ArticleId>
<ArticleId IdType="pii">S2213-2317(18)31243-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.redox.2019.101171</ArticleId>
<ArticleId IdType="pmc">PMC6429583</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 2002;353:497-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12078522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 1977 Mar;56(1):110-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">838129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2017 Apr;11:708-714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28193593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2001 Jun 1;30(11):1191-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11368918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Feb 15;14(4):725-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20964547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):964-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jan 23;303(5657):540-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14704431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2009 Sep;8(5):524-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Oct 29;395(6705):854</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9804418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurotox Res. 2018 Feb;33(2):259-267</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28822104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2014 Oct;19(10):778-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25200408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Sci. 2008 Feb;101(2):215-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17989133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2018 Apr 1;619-620:1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29136530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Environ Contam Toxicol. 2012 Oct;89(4):704-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22875284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2013 Oct;63:381-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23722165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Apr 08;8(4):e60731</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23593298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Aug 1;17(15):1882-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2007 Aug;142(2):175-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17522090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2012 Sep;393(9):999-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22944698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurotox Res. 2019 Jan;35(1):208-216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30155682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 1977 Nov-Dec;6(6):413-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">926867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Feb 10;18(5):481-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22866967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2009 Jun;8(3):258-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19627265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2016 Aug 16;55(32):4519-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26894491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1273-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18267127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 Mar 1;52(5):850-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22226831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Polym. 2016 Jun 25;144:122-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27083801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2008 Oct;7(10):4557-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18720983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 Mar 1;402(2):205-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17295611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oxid Med Cell Longev. 2016;2016:4856761</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27885333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16275-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16251270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 16;485(7399):459-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22622569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biofactors. 2003;17(1-4):103-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12897433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Toxicol. 2012;2012:546915</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22899914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2008 Oct;295(4):C849-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18684987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2010 Feb 3;30(5):1766-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20130186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2005 Oct;4(5):257-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16164425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 May 7;338(4):745-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15099742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2005 Dec;10(12):1203-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16324156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Pharmacol. 2015 May 15;6:98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26029106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurotoxicology. 2018 Sep;68:189-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30138651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1999 Nov;27(9-10):922-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10569625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Toxicol. 2015 Sep;35(9):999-1006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25644961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 Aug 4;346(3):629-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16780799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20479-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23185015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D26-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19934255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurotoxicology. 2013 Sep;38:51-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23721876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Pharmacol. 2017 Jul;53:105-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28531761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2016 May;203(1):387-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26920757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Sep 15;43(6):883-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17697933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 Jan 10;20(2):217-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23641861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2014 May 19;24(10):R453-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24845678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Mar 15;44(6):921-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18155672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2010 Jan 15;5(1):47-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19957967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2011 Oct 26;31(43):15362-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22031882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Pharmacother. 2003 May-Jun;57(3-4):145-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12818476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2008 Feb;22(2):343-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17901115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Drug Deliv Rev. 2008 Oct-Nov;60(13-14):1545-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18652861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):E2501-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24889636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Aspects Med. 2009 Feb-Apr;30(1-2):13-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18786560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Jan 27;6(1):e16561</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21304598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Res Int. 2017 Dec;102:213-224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29195942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2015 May;200(1):123-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25769980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2013 Oct 28;1:508-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24251119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Pharmacol. 2015 Mar 10;6:1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25805991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Worm. 2016 Aug 31;5(4):e1230585</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28090393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Rev. 2011 May;43(2):281-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21428694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19839-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19064914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2007 Feb;128(2):196-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17157356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 1984 Apr;102(2):368-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6706004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 06;8(8):e71525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23936512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Sep 14;47(5):767-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22819323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2003 Jan;28(1):32-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12517450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2017 Sep;110:133-141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28571752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1999 Jun 7;259(2):244-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10362494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2012 Aug;34(2):209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22836943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Sci. 2010 Dec;118(2):530-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20833709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2015 Sep 20;23(9):734-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25891126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Rev. 2012 Aug;44(3):209-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22656429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Jul 6;358(3):837-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17509531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Feb 17;5(2):e9267</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20174640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2008 Aug;275(15):3959-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18616466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Oct 1;19(19):2278-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Aspects Med. 2009 Feb-Apr;30(1-2):86-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18812186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 1983 Nov;100(1):64-119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6684600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1983;52:711-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6137189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1978 Mar;133(3):1126-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">417060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 May;1830(5):3217-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23036594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2010 Jun 4;9(6):2871-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20392130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Sep;194(9):821-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18648821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2013 Mar-Apr;48(2):173-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23356510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Age (Dordr). 2015 Dec;37(6):113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26546011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Nov 08;7:13234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27824033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1997 May;146(1):149-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9136008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2015 Nov;88(Pt B):290-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26232625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2016 Mar;202(3):885-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26953268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oxid Med Cell Longev. 2015;2015:124357</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26075030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2014 Jan;66:75-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23899494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2017 Apr;11:365-374</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28043053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2015 May;396(5):401-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25581754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Nutr Food Res. 2014 Apr;58(4):863-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24254253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 May;1830(5):3139-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23127894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Jan 23;580(2):484-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16387300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2012 Sep;23(7):722-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22504020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2001 Nov 15;360(Pt 1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11695986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002;3(5):research0025</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12049666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Nov 1;19(13):1539-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23397885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2015 Jun;200(2):387-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26088431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2009 Jun;130(6):357-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19428455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Apr 20;33(7):2227-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15843685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2014 Oct 9;9(1):9-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25284791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Pharmacol. 2014 Jul 17;5:168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25100998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2016 Jan;15(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26518762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2017 Apr;11:502-515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28086197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Apr;1783(4):641-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18331844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2016 Oct 1;25(10):577-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27306519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2015 Nov;139:496-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26291679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurotoxicology. 2012 Oct;33(5):1021-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22560997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Pharmacol. 2014 Aug 26;5:196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25206336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2016 Apr 1;595:81-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27095221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2005 Jun 1;38(11):1518-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2016 Jan;153:14-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26704446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2015 Jul;149:88-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26056713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2016 Apr 1;595:64-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27095218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2015 Feb 18;85(4):804-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25640076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Dec 15;13(12):1911-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20568954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2015 Aug;14(4):558-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25808059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Aspects Med. 2009 Feb-Apr;30(1-2):42-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18601945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Apr 1;26(7):1621-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9512531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dis Model Mech. 2018 Jun 21;11(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29752286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2009 Sep;276(18):5030-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19663909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Lett. 2007 Dec 10;175(1-3):82-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18023302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Sep 29;5:5020</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25262602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Jun 19;8:15868</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28627510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2014 Aug 14;12:64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25204677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2015 Dec;14(6):971-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26255886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Chromatogr. 2007 Oct;21(10):999-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17516464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Mar 15;14(6):1023-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20649472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2011 Mar 18;406(3):478-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21334311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Biochem Anal. 2006;47:203-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16335715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Chem Biol. 2016 Aug 18;23(8):955-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27499530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2014 Mar;68:205-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24316195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2015 Mar 1;24(5):1322-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25355420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2018 Aug 20;29(6):541-551</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29113458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2016;50(2):126-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26291534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Aspects Med. 2009 Feb-Apr;30(1-2):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18796312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2007 Aug;7(4):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2014 Aug;73:328-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24863694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Res. 2007 Feb;55(2):139-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17207635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2010 Aug;9(4):636-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20550516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2003 Oct 13;42(39):4742-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14562341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2001 Nov;1(11):1463-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11922606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2007 Sep;42(9):845-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17379464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2015 Jul 20;23(3):256-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25544992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jan 4;46(D1):D869-D874</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29069413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 Jan 1;409(1):205-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17714076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Sep 15;17(6):890-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22369044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Sep 22;9(9):e107685</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25243607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Aug;17(8):1232-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10908643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Aug;267(16):4928-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2007 May;274(9):2163-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Intern Med. 2010 Nov;268(5):432-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20964735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2015 Aug;5:71-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25863726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(9):e25624</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21980510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jun 27;9(6):e101408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24971995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(7):R132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17612391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biogerontology. 2010 Apr;11(2):183-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19597959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D472-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17099225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Jun 15;16(12):1384-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22220943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1064-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21199936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2004 Jul;4(7):1989-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15221760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Oct 22;279(43):44533-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15308663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2015 Mar;80:164-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25277419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Oct;267(20):6102-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11012661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Sep 1;45(5):549-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18544350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2008 Dec 18;1(1):68-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20157589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2018 Apr;14:386-390</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29055282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2001 Oct 12;287(5):1083-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11587532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Aug 05;6(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20700440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Nov 21;6:37346</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27869126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2014 Mar 1;592(5):871-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23959672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Aug;10(8):741-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23817069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2017 Apr 13;36(8):1046-1065</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28283579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Rep. 2015;2:961-967</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26726309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2005 Oct;18(5):519-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16333752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2018 Jul 17;7:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30014846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oxid Med Cell Longev. 2012;2012:608478</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22966416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2016 Jul;96:446-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27117030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Sep 13;288(37):26480-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23861405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Zool A Comp Exp Biol. 2006 Sep 1;305(9):720-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16902959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2017 May;19(5):1776-1790</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28028877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2003 Jun 1;34(11):1405-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12757851</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Ferguson, Gavin Douglas" sort="Ferguson, Gavin Douglas" uniqKey="Ferguson G" first="Gavin Douglas" last="Ferguson">Gavin Douglas Ferguson</name>
</noRegion>
<name sortKey="Bridge, Wallace John" sort="Bridge, Wallace John" uniqKey="Bridge W" first="Wallace John" last="Bridge">Wallace John Bridge</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000112 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000112 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30901603
   |texte=   The glutathione system and the related thiol network in Caenorhabditis elegans.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30901603" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020